UCRL-94432
PREPRINT

PARALLEL COMPUTING AND MULTITASKING

David V. anderson
Eric J. Horowitz
Alice E. Koniges
Michel G. McCoy

This paper was prepared for submittal to
E Computer Physics Commur ir-ations

April 1986

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Important Information
Published in Computer Physics Communications, Volume 43, pages 69-87 (1986).

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or
the University of California, and shall not be used for advertising or product endorsement purposes.

Over the past decade we have witnessed an evolution of scientific com-
puters in which more and more concurrent or parallel arithmetic operations
are allowed. The segmented pipeline arithmetic functional units, direct vec-
torization, indirect vectorization, multiprocessing, and finally multitasking
represent stages of development of parallel computation. Algorithms for
the solution of physics problems must be tailored, if possible, to the forms
required for these various kinds of parallelism. Considerable experience in
the adaptation of these methods to employ direct vectorization has been
gained within the computational physics community over the last several
years. Much of this know-how carries over to the newer forms of parallel
computation. Indirect vectorization, available on some Cray X-MP models,
on all Cray-2 computers, the ETA-10, and on some of the newer Japanese
machines, allows one to vectorize data that is stored randomly in memory.
Monte Carlo calculations have been greatly benefited by this development.
In multitasking, one program, partitioned into tasks, may use one or more
processors concurrently. The implementation of this technique is straight-
forward and will be shown to be applicable to more numerical techniques,
including implicit ones, than were first thought to be the case. The new
multi-processor computers are used optimally if one can continue to keep all
of the processors busy most of the time. We do this by maintaining a time-
sharing environment in which unitasking and multitasking jobs compete
for the available processors in such a way as to minimize idling. Examples
drawn from plasma equilibrium calculations, sparse matrix solvers, and
particle simulations will be presented to illustrate some of these concepts.

1. INTRODUCTION

The history of parallel computing begins essentially at the beginning of
the digital computer age, dating from the mid 1940’s. The first ENIAC
computer (1] was designed when digital circuitry was very slow. To obtain
adequate speed it employed 23 functional units that were operated simul-
taneously from a single set of instructions that were literally hand coded
using patch cords. Although arithmetic proceeded in parallel, the code was
effectively sequential.

Rapid technological advances in computer speed and software difficulties
with programming the parallel arithmetic units led to the abandonment of
these early configurations in favor of ones for which the programming was
more straightforward.

During the mid-1960’s computers were developed that computed ad-
dresses of memory locations simultaneousely with the arithmetic of the
application. This kind of concurrent operation operated behind the scenes,
so to speak, and was of little concern to the programming physicist. Other
operations, not of direct concern to the user, also became parallel. For
example some computers could read and write to the memory by multiple
data paths at the same time.

The development of vectorization came n two separate stages. About
1970, for example, the CDC 7600 was built with segmented arithmetic
units that each consisted of approximately 7 separate stages through which
operands are processed in an assembly line fashion; the last stage produces
the final answer at the same time the earlier stages are processing operands
through the preceding steps of the binary arithmetic. Yet, there was no
hardware nor procedure for feeding a steady stream of operands into or
results out of these segmented “pipeline’ units. Typically, these segmented
units were starved from the lack of available data and instructions. Thus
they did not produce results at the desired rate of one answer per computer
cycle.

The notion of a single instruction for combining operand vectors- the
vector instruction- and the array of registers known as the vector register
comprised the second development that permitted the segmented arith-
metic units to run at a speed producing one result every computer cycle.
Several vendors of scientific computers introduced such vector hardware
and software during the mid-1970’s; of these many of us are most familiar
with the Cray-1 computer. A rough measure of the asymptotic speedup

from vectorization is just the number of segments in the functional units
on the order of 7.

With the advent of vectorization, the implementation of it could not
be made automatic because certain kinds of recursions exist that could
invalidate the vector mode. These could not (and can not) be detected
by the compiler as there were (and are) dependencies on the data that
cannot be forseen by the compiler. Therefore, the end user was given
additional commands with which to control vectorization. New algorithms
have been developed in response to vectorization. Certainly, programming
styles have changed to exploit the faster speed. As one pays considerably
less for vectorized calculations as compared to scalar ones there has been
an economic incentive to use these techniques.

With this cursory history of parallel computing we now have set the
stage for the discussion of several new developments that are beginning to
have equally profound effects on the way in which we do computational
physics. Three new items of hardware, that are relevant, have been incor-
porated in the Cray-2 computer: list

e A radically larger memory- typically 256M 64bit words (2 giga bytes).
¢ Indirect vectorization by gather and scatter operations.

e A multiprocessor architecture that has four CPU’s sharing the large
memory.

The sober realistic view is that the Cray-2 design was the result of com-
promise. One view contended that much larger memory was required to
make the Cray-2 a more capable machine. A more traditional approach
was to follow the historical sequence of increasing the speed and using fast
memory that was expensive and thus could not be radically larger. To
keep the Cray-2 affordable, the large memorv option was chosen with the
installation of cheap MOS (dynamic) memorv. This has put a severe con-
straint on the hardware design which results in # machine that is not much
more powerful, on a per-processor basis. than a Cray-1 Since it costs less
than half a Cray-1 on a per processor basis, it ¢ a much more economic
machine. As we shall see, the memory. multitasking. and enhanced vec-
torization capabilities make it a very capable machine. Its main drawback,
the MOS memory, and the consequent loss of chaining, were the result
of the very high cost of fast static memory ir ~ecent vears (compared to
the MOS dynamic memory}. Happily. static meniory is now ten cents on

the 1984 dollar. Future computers on the horizon will have large and fast
static memory- as encouraged by the leading designers in the field.[17] The
Cray-2 is supplying a critical link in this evolution by making supercom-
puters with very large memories available. As a result, many previously
mntractable physics applications are now affordable.

The outline of this paper is as follows: In the next two sections we shall
attempt to describe the new kinds of parallelism that are allowed by the
larger memory and by the indirect vectorization capability. Then in sections
4, 5, and 6 we’'ll discuss multiprocessing computers, unitasked multiprocess-
ing, and multitasking. From some of our experiences and studies on the
Cray-2, described in section 7, we then propose strategies for optimal use
of the computer in section 8. In section 9 we briefly describe the CTSS
multiprocessing system that we use and lastly, some concluding remarks
will be found in section 10.

The related topics of microtasking, new languages with parallel syn-

tax, automatic multitasking, and non-deterministic algorithms will not be
discussed in this paper.

2. MEMORY PARALLELISM 7?7

At first one might not think of the much larger memory as being an
aspect of parallel computing, but perhaps it can be regarded as a different
form of parallelism in two signifcant ways In the first instance it obviates
the need for the recomputation of intermediate quantities(that were previ-
ously done for the lack of available memory) thus shortening the number of
cycles needed. One might regard the extra memory used as carrying these
intermediate results in “parallel” with the other parts of the calculation.
More importantly, the large memory allows the use of entirely different
methods and their associated algorithms that were previously untenable
because of their memory requirements. These other methods are chosen
for their favorable convergence properties so that they require fewer com-
putational cycles. Typically, higher order methods and more fully implicit
algorithms are accomodated. Again, the memory holds the additional in-
formation in parallel with the actual computation

We illustrate this speedup effect of the niemory by showing a comparison
of matrix solvers used to advance a Fokker-Planck simulation of plasma
transport. The iterative ADI solver of the CQL rode[2] was replaced by

L PR,

=

L

R

ARy PN

a direct LU band solver. A recent calculation of the kinetics of runaway
elections in a tokomak was redone with the new version. The implicit
system to be solved has a matrix of order 15000. In the earlier version
13.52 minutes were spent doing matrix solves while in the new version
just .53 minutes were used. Hence the speed increase was by a factor of
25.5. For the overall Fokker-Planck calculation a speedup factor of 15.1
was obtained. It should be realized that other problems might be better
treated by an iterative method, but in this particular application the direct
method produced the desired accuracy in much less time.

3. INDIRECT VECTORIZATION

Prior to the introduction of indirect vectorization, only data stored at
regular constant intervals (or strides) in memory could be used in or written
from vector operations. To implement the vectorization of randomly stored
data, a list of addresses is needed since they cannot be computed from any
regular pattern. Such a list vector is implemented in FORTRAN by using
arrays with indirect indices such as A(I(J') where the mnteger vector I(J) is
this list vector. When A(I(J)) appears on the right side of a FORTRAN
expression, the computer must gather the various A’s from the indicated
positions I(J) in memory and put them in a vector register for subsequent
calculation. Alternatively, when A(I(J)) appears on the left side of a FOR-
TRAN statement the computer must store- or scatter- the A’s back to
their positions I(J). The vector gather is straightforward, but the scatter
can map several J values into the same memory location I, thus producing
a vector conflict. One may remedy this problem bv sorting into sub-vectors
that each have one to one mappings. This feature has allowed Monte Carlo
calculations, particularly plasma particle simulation codes, to be fully vec-
torized except for an inexpensive sorting phase. [n Fig 1 we show the
improvement in performance obtained in the 3I) particle code QN3D (3]
for the portion of the calculation that interpolates grid quantities to the
particle positions. This is a gather operation. In contrast, the interpolation
of the particle quantities to the grid requires the -catter operation as well
as the gather. Figure 2 shows the speed rmhancemen: obtained when the
scatter and gather operation was applied to properly -orted sub-vectors.

Another promising application of indirect vectorization is in the use of
sparse matrix solvers. The use of indirect indices is a verv convenient way
to specify the sparsitv pattern of the operazor watry This also leads to

very compact code compared to previous algorithms that did not employ
this form. And in addition to this benefit, the compact form also vectorizes.
The earlier forms of conjugate gradient solvers cannot be fully vectorized
because several of the innermost loops are recursive. Our new method es-
sentially builds a new loop inside this recursive one; the new loop vectorizes
with a vector length basically equal to half the number of operator stencil
points. In many applications this number is on the order of 10 to 100 and
can lead to faster code. We have used this method to solve coupled partial
differential equations in 3D in fully implicit form. As an illustration of this
methodology we display portions of the FORTRAN coding for both the
old and new cases. We show the part that implements the incomplete LU
factorization of the sparse matrix. This kind of treatment is often found
in preconditioned conjugate gradient algorithms such as ILUCG. Details of
these methods and codes are available elsewhere. [4,5,6,7] One should bear
in mind that the ILUCG3 code is restricted to the special case of just one
PDE. The relevant section of code from the program ILUCG3 now follows:

do 10 1 = 1, mn

..This removed section had the calculation of b(i,115), the diagonal.

..The following code gets the off-diagonal factors of L and U

O 0O 6 0 a6 0o 0o 0 006

in15 = i + nis

b(i,115) = b(i,115) + b(i,12)*b(2n15-n27,127)

. + b(i,13)*b(in15-n26,126) + b(i.l5)*b(in15-n24,124)

. + b(i,16)*b(in15-n23,123) + b(i 18)*b(in15-n21,121)
+ b(i,1$)*b(in15-n20,120) - b(1 ;11)*b(in15-n18,118)

.+ b(i,112)*b(in15-n17,117:

c in13 = i - 013 = inib

b(ini15,113) = ~b(i,114)*(b(015,113}
+ b(in15,11)#*b(i-n26,126) + b{in15,12)*b(i-n25,125)
+ b(in15,14)*b(i-n23,123) + b(in15,15)*b(i-n22,122)

. + b(in15,17)*b(i-n20,120: + b{in15,18)*b(i-n19,119)

4

. + b(in15,110)*b(i-n17,117) + b(in15,111)*b(i-n16,116))

in16 = i + ni16

if(in16.gt.mn) go to 10

b(i,116) = b(i,116) + b(i,14)*b(ini6-n26,126)
. + b(i,15)*b(in16-n26,125) + b(i,17)*b(in16-n23,123)
. + b(i,18)*b(in16-n22,122) + b(i,113)*b(in16-n17,117)

in12 = i + nl12 = in1é

b(in16,112) = -b(i,114)*(b(in16,112)
. + b(in16,12)*b(i-n24,124) + b(in16,13)»b(i-n23,123)
. + b(in16,15)*b(i-n21,121) + b(in16,16)*b(i-n20,120)
. + b(in16,111)*b(i-n15,115)!

in17 = i + nl17

if(in17.gt.mn) go to 10

b(i,117) = b(i,117) + b(i,14)*b(in17-n27,127)
. + b(i,15)*b(in17-n26,126) + b(i,16)*b(in17-n25,125)
. + b(i,17)*b(in17-n24,124) + b(i,18)*b(in17-n23,123)
. + b(i,19)*b(in17-n22,122) + b(i,113)*b(in17-n18,118)

in11 = i + ni11 = inl17

b(in17,111) = -b(i,114)*(b(ini7,111;
. + b(in17,11)*b(i-n24,124) + b(in17,12)*b(i-n23,123)
. + b(in17,13)*b(i-n22,122) + b(in17,14)*b(i-n21,121)
. + b(in17,15)*b(i-n20,120) + b{in17.16)*b(i-n19,119)
. + b(in17,110)*b(i-n15,115))

in18 = i + ni8

if(in18.gt.mn) go to 10

b(i,118) = b(i,118) + b(i,15 *b(in18-n27,127)
. + b(i,16)*b(in18-n26,126) + b(i,18)*b(in18-n24,124)
. + b(i,19)*b(in18-n23,123)

in10 = i + n10 = ini8

b(in18,110) = -b(i,114)*(b(ini8,110)
. + b(in18,11)*b(i-n23,123) + b(in18,12)*b(i-n22,122)
. + b(in18,14)#*b(i-n20,120) + b(in18,15)*b(i-n19,119))

in19 = i + ni19

if(in19.gt.mn) go to 10

b(i,119) = b(i,119) + b(i,110 *b(in19-n23,123)
. + b(i,111)*b(in19-n22,122) + b(i,113)*b(in19-n20,120)

in9 =i +1n9 = inl9

b(in19,19) = -b(i,114)*(b(in:9.19 } + b(in19,15)*b(i-n18,118)
. + b(in19,16)*b(i-n17,117) + b(in19,18)*b(i-n15,115))

10

in20 = i + n20

if (in20.gt.mn) go to 10

b(i,120) = b(i,120) + b(i,110)*b(in20-n24,124)

. + b(i,111)*b(in20-n23,123) + b(i,112)+*b(in20-n22,122)

. + b(i,113)*b(in20-n21,121)

in8 =i + n8 = in20

b(in20,18) = -b(i,114)#*(b(in20,18) + b(in20,14)*b(i-n18,118)
. + b(in20,15)*b(i-n17,117) + b(in20,16)*b(i-n16,116)

. + b(in20,17)*b(i-n15,115))

in21 = i + n21

if(in21.gt.mn) go to 10

b(i,121) = b(i,121) + b(i,111)*b(in21-n24,124)

. + b(i,112)*b(in21-n23,123)

in7 =i + n7 = in21

b(in21,17) = -b(i,114)*(b(in21,17) + b(in21,14)*b(i-n17,117)
. + b(in21,15)*b(i-n16,116))

in22 = i + n22

if (in22.gt.mn) go to 10

b(i,122) = b(i,122) + b(i,110)*b(in22-n26,126)

. + b(i,111)*b(in22-n25,125) - b(i,113)*b(in22-n23,123)

in6 =i + n6 = in22

b(in22,16) = -b(i,114)*(b(in22,16) + b(in22,12)*b(i-n18,118)
. + b(in22,13)*b(i-n17,117) - b(in22,15)*b(i-n15,115))

in23 = i + n23

if (in23.gt.mm) go to 10

b(i,123) = b(i,123) + b(i,110)*b(in23-n27,127)

. + b(i,111)*b(in23-n26,126) - b(i,112)*b(in23-n25,125)

. + b(i,113)*b(in23-n24,124)

in5 =1 +nb = in23

b(in23,15) = -b(i,114)*(b(in23,15) + b(in23,11)*b(i-n18,118)
. + b(in23,12)*b(i-n17,117) - b(in23,13)*b(i-n16,116)

. + b(in23,14)*b(i-n15,115))

in24 = i + n24

if(in24.gt.mn) go to 10

b(i,124) = b(i,124) + b(i,111)#b(in24-n27,127)

. + b(1,112)*b(in24-n26,126)

in4 =i + n4 = in24

b(in24,14) = -b(i,114)*(b(in24,14) + b(in24,11)*b(i-n17,117)
. + b(in24,12)*b(i-n16,116))

11

10
20

in25 = i + n256

if(in25.gt.mn) go to 10

b(i,125) = b(i,125) + b(i,113)*b(in26-n26,126)

in3 =i +n3 = in25

b(in25,13) = -b(i,114)*(b(in25,13) + b(in25,12)*b(i-n15,115))
in26 = i + n26

if(in26.gt.mn) go to 10

b(i,126) = b(i,126) + b(i,113)*b(in26-n27,127)

in2 =i + n2 = in26

b(in26,12) = -b(i,114)*(b(in26,12 ’ + b(in26,11)*b(i-n15,115))
in27 = i + n27

if(in27.gt.mn) go to 10

b(i,127) = b(i,127)

in1 =i + n1 = in27

b(in27,11) = -b(i,114)+*b(in27,11)

continue

continue

In our new program CPDES3(coupled partial differential equation solver
for 3D) the above form becomes

0O 0O 0 0 o0 0 0 0 00

do 10 i=1,mm

..This removed section had the calculation of b(i,ld), the diagonal.

..The following code gets the off-diagonal factors of L and U.

do 1lploop lp = 1d+1, 2#ld-1
if(i + np(lp).gt.mn) go to 10
option assert(nohazard)

do upsum ipp = 1, ippm(1lp)

if (i+npp(ipp,1p).ge.1) then

b(i,1p) = b(i,1lp) + b(i,lpp(ipp,1lp))*b(i+npp(ipp,1p),lss(ipp,lp))
endif
upsum continue
1pd = 2#1d - 1p
if(1pd.1t.1) go to 1lploop
option assert(nohazard)
do dnsum ipp = 1, ippm(1p)
if (i-npp(ipp,1lpd) .ge.1) then
b(i-np(lpd) ,1pd) = b(i-np(1lpd),1lpd) +
. b(i-npp(ipp,1pd) ,1pp(ipp,1lpd))*b(i-np(1pd),lss(ipp,lpd))
endif
dnsum continue
b(i-np(1pd) ,,1pd) = -b(i,1d)*b(i-np(lpd),1lpd)
lploop continue
10 continue

The most obvious point here is the substantial reduction in tedious de-
tailed programming when we employ the indirect indexing. Not only is the
coding more tractable (and by inference more readable), it is also more gen-
eral. Where the first block of coding is specifically restricted to the matrix
sparsity pattern generated by a 3D 27 point stencil operating on a scalar
field, the second block is much more general and can represent more compli-
cated operators. For example, fully coupled Maxwell’s equations have been
treated by this method.[8] We must point out that this indirect indexing
could have been used in earlier codes, but the lack of vector indirection
would have produced very slowly running programs at much less than the
nominal scalar speed.

As one might expect, indirect vectorization has more overhead than the
more standard direct form. For those cases where the vectors are short (
<< 64), indirect vectorization may not be faster than the scalar coding
that does not employ indirect indices. In one comparison we ran ILUCG3
and CPDESS3 for the same 27 point operator and obtained the disappointing
result that the latter was ten times slower per conjugate gradient iteration.
The vectors that actually appear in that CPDES3 calculation vary in length
from 9 down to 1 with an average length of about 5. For vectors of these
short lengths even direct vectorization (which is not applicable here) would
not give much improvement and, as is seen here. indirect vectorization is
worse.

Nevertheless, longer vectors occur in more complicated problems where
the stencil operator may represent several coupled partial differential equa-
tions. Then the speed of the calculation improves. For three coupled equa-
tions, a Darwin form of Maxwell’s equations being an example, the CPDES3
code improved to be only four times slower than the reference calculation.
We expect compiler improvements and better written FORTRAN on our
part will yield improvements on these preliminary findings.

From these rather pessimistic results of the comparisons of the matrix
solvers we can still make some favorable inferences. The newer forms of
the code are much more general and compact thus making the human user
more efficient. In this regard the likelyhood of coding errors is greatly re-
duced. These newer forms do vectorize and thus partly offset the otherwize
greater expense of the additional level of indirection. These forms extend
our capability but do not always lead to better performance as they did in
the example of the particle codes.

4. MULTIPROCESSING COMPUTERS

At the present time many diverse types of parallel processing comput-
ers are being developed. Many of these represent research and development
efforts while a few are in commercial production. We shall restrict our at-
tention to this latter group. We further narrow the scope of our discussion
to just those computers with shared memory and whose ('PU’s retain vec-
torization.

We see two important reasons that users will prefer the multiprocessing
computers over their predecessors: Cost and performance. Even without
multitasking, the sharing of a much larger memory makes for more cost
effective use of the memory (as is true for many shared resources) and ad-
ditionally gives more capability, as we saw above where a memory intensive
algorithm was used with concomittant improvement in performance. For
the new forms of vectorization, further cost reductions and performance
gains sometimes accrue. When multitasking is done performance is en-
hanced but, as we shall see, determining the cost benefits of multitasking
is difficult. It is complicated by issues of human performance, throughput
degradation, the charging algorithm, as well as others. All agree that codes
using very large amounts of memory will be more cost efficient if they can
be multitasked, but for more typical programs there is much discussion.

NMFECC Computers
Attribute | Cray-1 | Cray-1s | Cray XMP-22 | Cray-2
Number
of CPU’s 1 1 2 4
Memory
Size 1lm 2m 2m 64m
Floating
Hardware
Segments 7 7 7 19
Clock
Cycle 12.5ns | 12.5ns 9.7ns 4.2ns
Memory
Channels 1 1 3 1
Memory e
Recovery | 4 clocks | 4 clocks | 4 clocks 51 clocks
Chaining Yes Yes | Yes No
Vector o
Indirection No No No Yes
Asequential o
Memory
Traffic No No No Yes

Table 1: Hardware Characteristics of the NMFECC Cray Computers

Cray Research has manufactured two lines of multiprocessors, the Cray
X-MP and the Cray-2. Experiences, inferences, and strategies regarding
these machines will be related in the following sections with emphasis on
the Cray-2 (where we compute most often.) In Table 1 we give several
of the important specifications of the various Cray computers. The Cray-
2 is a complicated machine that differs significantly from the Cray-1 and
Cray X-MP line. Its faster clock cycle is offset by its slower memory, its
lack of chaining, its lack of overlapped memory traffic, and by its alternate
cycle issue of instructions. This results in a machine with a per processor
performance roughly equal to a Cray-1 if one does not exploit its new
features.

In Fig. 3 we have plotted for several computers the maximum floating

point arithmetic speed (for the entire omputer versus the full memory
size. From it we note that the Cray-2 computers do no¢ follow the historical
trend that one can determine from the sequence of the CDC7600, the Cray-
1, and the Cray X-MP. If we establish the scenaric that certain physics codes
merely refine their grids as they move frors the smaller slower computers to
the more capable ones, we can establish how many MFLOPS are required
to solve the same problem on the different machines in the same wall time.
In the case of MHD calculations in 3D, an n*/3 scaling results. Here n is
the number of grid points. Likewise, certain Poisson solvers scale as nlnyn.
In the figure we have plotted these scaling trends as well. The historical
sequence of the earlier productions {all of Sevmour Cray! follow this scaling.
The Cray-2 (and by rumor the Cray-:}: specifications he well outside this
trend. Many existing physics codes {that scale as shown) will become very
slow if one simply refines the grid to fill ap <he * ray-? memory. Clearly,
there is the incentive here to move to alternative algorithms that are more
memory intensive and that use fewer ('P7 cycie

5. UNITASKED MULTIPROCESSING

The primary mode of multiprocessing ou tie ray auitiprocessors is by
the concurrent computation of independent unitasking codes on the sepa-
rate processors. This is certainly true for the baich oriented COS system
supplied by Cray and for the timesharing oriented 7T SS operating system
of Livermore. In the unitasked maode of cueranon the multiprocessor com-

of the shared memory 1s nor a vomplicat ar for “he vser but is managed
by the system.

It should be emphasised that under nornia - sackticns . unitasking yields
the maximum throughtput of the multipro . essr secause it avoids the over-
head associated with multitasking. Maxizu Hroughput is equivalent to

minimizing the idle cycles and cvcles devete @ udditionial overhead. How-
ever, when a unitasking program requires - mv-h menwry that no other
codes will fit in the remaining memory spi o, b« sitiction is created n

which the other processors are forced to icle with ai assoated reduction of
the throughput. This suggests that very s g 5 rogram: . should multitask
to maintain high system efficier .

For calculations that requure very fast vl i perfuitaance, unitasking
may be too slow. Then resardless of progran =i¢ ariltizasking may help

one achieve the desired speed.

Policy may discourage unitasking other codes as well; this can be done
by constraining the charging algorithm to give unitaskers large surcharges.
It is felt that future computers may be massively parallel and that the users
must be encouraged to learn multitasking now rather than later. As will
become more apparent below, this is in fact the policy at NMFECC.

6. MULTITASKING ESSENTIALS

We shall discuss a form of parallel programming and computing known
as multitasking. We will restrict our presentation to the implementations
used with the COS[9] and CTSS[10] operating systems for Cray computers.
Other forms of multitasking exist and others will be invented but we shall
ignore them here.

From a programming point of view multitasking means the partitioning
of a program into tasks each of which is a chain of subroutines- a so-called
caller-callee chain. If the logic and data structure of the code permits sev-
eral tasks to run concurrently, then multitasking may be invoked without
destruction of the data or logic. Thus it is desireable that tasks be inde-
pendent.

From the view of the computer, or let's say the operating system, mul-
titasking is accomplished by regarding tasks as the basic unit of work, re-
placing the program. For a unitasking job, there is no fundamental change.
If a program has more than one task, the system may assign the multiple
tasks to more than one processor.

When the user implements multitasking, other library routines that are
required must be loaded and executed thus increasing the overhead expense
of the calculation. This overhead tends tc be constant for every invocation
of multitasking so it is important that the amount of physics arithmetic
be large in comparison. The ratio of the number of computer cycles of
physics arithmetic to the number of overhead cycles is defined to be the
granularity of a task. We shall see that keeping the granularity sufficiently
large is often not difficult. Another concept relevant to multitasking is that
of reentrancy. It means that there exist multiple program pointers, one
from each CPU, working on your job. There may even be several pointers
within the same subroutine simultaneously; this means that a subroutine
can run in parallel with itself. While only one copy of the subroutine (in

the form of its instructions) will exist, wdtaple pies f the subroutine’s
local data are generated, one for each task creaiec The values of local data
are not preserved across calls because the: are ncit unigue and therefore no
prescription for their ressurection is logical Thus we see that a subrou-
tine running in parallel! with itself is not really cioned, hut rather multiple
storage areas are created for the local variables and muitiple pointers are
used from the multiple processors to the single couv of <ode. The user may
specify that some local variables be saves. This anses them to be stored
with the single copy of the subroutine vode rathe- “has: with the task data
and it further implies that saved local variables mav change in strange ways
if several concurrently running tasks are tryiag % .aodity them. Neverthe-
less, good FORTRAN programming pract e will x#ep nue from making too
many mistakes of the kind alluded to her:

In the introduction we reviewed the parallelisn: siircriu ed by segmented
functional units and by vectorization. From & programmeng point of view
one could say these are at the statement leve! and w2 the naer do loop level.
Multitasking is at the subroutine level or 1igher 1* s impiemented by ask-
ing the system to create a task of a subrontine -nd wxecute it. Further,
the calling program does not wait for the task t . fimsh -inless explicitely
told to wait. In Table 2 we display some « f the st connraon multitasking
commands we use. The simplest of these azd “he most often used, are
those of the task manager library. To start a task runusyg we use CALL
TSKSTART. Its arguments include a task 1dentifer arriv the name of the
subroutine to start. and the arguments passesd - rher wabrontine. Typ-
ically, one would make several calls t: "SKSTARY o et several tasks
started. The calling program itself is a ask known .« the root task. TIf
nothing else is done. all of the tasks startec. weinding the root task, are
available to the computer system for parzdlel comirntai ree The nature of
the operating system. the load of competing i
factors imply that the exact phasing of the paralle task. will rarely be the
same from one run to the next. The ordermg f 7 storing and fetching of
critical data from the memory is likely t:- varv anc revors o synchromization
possible. In a typical calculation. the ro tasic wel’ nee? he results of the
called tasks at some poimnt. It is just before this aoure tha o synchronization
barrier must be used. A call to TSKWATIT Hoes tnys 1 ciakes the calling
task wait for the completion of the task name ! by the "““KWATT call.

So there you have it. Just two calls allow yor 10 uveke maltitasking,
Probably 90% of the physics applications «ar: he e -opi dated by this form
without recourse to the more complicalod swvn by viizeisn calls we discuss

harng jobs, and other

Multitasking Commands to MULTILIB
Command Effect Facile | Overhead | Degrading? | Remarks
TSKSTART Spawning Yes .25ms No Essential
TSKWAIT Halts Caller Yes @ .02ms No Essential
LOCKASGN | Names Region | Maybe | .02ms Maybe Avoidable
LOCKON Locks Region | Maybe ! .02ms Maybe Avoidalbe
LOCKOFF Unlocks Maybe | .02ms Maybe Avoidable
EVASGN Names Event No | .02ms Often Avoidable
EVPOST Satisfaction No = .02ms Often Avoidable
EVCLEAR | Sets Condition| No ' .02ms Often Avoidable
EVWAIT Waits for Post No "J .02ms Often Avoidable

Table 2: Properties of the Most Common Multitasking Commands

below.

Sometimes, tasks are not fully independent of each other and pains must
be taken to insure that the computation will proceed deterministically as
intended by the user. We shall distinguish two kinds of synchronization
refered to as locks and events.

Sometimes there exist regions of code that are critical in the sense that
only one of these regions should be allowed t¢ compute at a given time.
Usually, it is the case that these several regions of code would modify the
same data in memory and must have exclusive access to this data to pre-
vent erroneous results. To protect these critical regions we surround every
critical region of coding with CALL LOCKON(LID) and CALL LOCK-
OFF(LID) where LID is a lock identifier. The effect of these calls is to
lock and unlock the critical regions of code on a first come first serve ba-
sis. When the region is locked, the other tasks wait when they reach the
critical region. When it is unlocked, the first task that gets to it enters the
region and locks it and then unlocks it when it 1s done. Sometimes one
may avoid the use of locks by simply changing the data structure such that
the critical regions are removed. It should be realized that when we say
the “same data” we mean the very same memory locations. Different tasks
may modify the same data array without difficulty so long as they don’t
hit the same locations.

In other instances, the tasks are mutually) singly dependent on the

1G

calculation of intermediate results. They must insure these results are ex-
isting before they can continue to run. When the vanous tasks have these
dependencies one may use events to control the ordering of the compu-
tation. This is done principally by using the routines EVCLEAR(EID),
EVPOST(EID), and EVWAIT(EID). The first of these says that an event,
EID (the serial number name of the event), has not vet occured and that
all tasks calling EVWAIT(EID) will stop until the event has occured. The
event’s occurence is invoked by the call to EVPOST(EID). In practice one
can identify two principal uses for event management The primary use is
to generalize the TSKSTART and TSKWAIT combination to have lower
overhead without any change in the logical flow of the program. Without
getting into the details it allows one to keep tasks alive between their invo-
cations so as to save the overhead of recreating the task at every recurrence
of its use; sometimes this kind of use is refered to 4~ barner synchronization.
The second use of it is required when a task has dependencies on other tasks
that may be running concurrently. It should be apparent that concurrence
implies that the exact ordering is not koown [f there are points in the
program where the ordering is important one npist use events to control
it. Needless to say, one can produce very complicated, hard to understand,
and likely incorrect code with the event commands. (Great care must be
taken to insure that deterministic algorithms resuit aad that they are the
intended ones. As with locks, there are other remedies that sometimes
would allow one to avoid events. For example, subdivision of tasks may
result in a program that would not use events and that would only require
TSKWAIT or a simpler barrier synchron:zatiorn.

We wish to stress the point that locks and evenis reduce the parallelism
of a code. The greater the portion of the rode that they control, the closer
the code will resemble a unitasking code in performar.ce. Sometimes their
use is unavoidable. Then very thorough testiny mwust he done to insure
determinism as well as faithfulness o the desired agorithm.

7. MULTITASKING EXPERIENCTCES

Within the computational physics group a “MEECC several multi-
tasking codes have been built. Table % give~ e few details of these
codes. The first of these, VEPEC. 15 4 :atler large plasma equilibrium
code that had already been highly vectoruzed o - als mplicit and non-
linear. We felt it offered us a good test 1 v wirn » ould experiment

Multitasking Codes from NMFECC
Maximum | Maximum | Average
Code Purpose Memory | Theoretical | Measured | Measured | Comments
Size Overlap | Overlap | Overlap
ILUBCG? | Matrix Solver | 9.2 x 10° 1.81 1.79 1.67 Stiff
QN3D Particle Code | 1.2 x 107 4 3.7 2.8 Vectorized
SIMU Turbulence |34 x10°| 4 NA NA Easy
VEPEC | Equilibia [9.7x10°] 4 36 2.4 Implicit

Table 3: Overlap Results from Selected NMFEC'C Physics Codes

with multitasking to study conversion problems, to learn about the effects
of granularity, and to see if implicit (recursive) structures have any hope
of being multitasked. Some of our research has been in the area of sparse
matrix solvers. We have built several preconditioned conjugate gradient
solvers. Some of these employ the bi-conjugate gradient method that quite
naturally splits into two independent tasks for about 80% of the calcula-
tion. Lastly, we have undertaken a project to design a major 3D plasma
particle simulation code that is optimized for the Cray-2 in such a way that
the code is highly vectorized (95%) and fully multitasked.
VEPEC STUDIES

Our first study with VEPEC looked at the effects of granularity. We
chose a very simple loop in which two parts of the plasma current density are
added to form the total current density. These three vectors are computed
on a 3D domain which we unroll so that the calculation proceeds with
Just one spatial index. Vectorization is done over the spatial index and
a separate task made for each three vector component. Next, we chose
a somewhat larger granule of work in which we evaluate the multipole
expansion on the exterior boundary surfaces for the determination of self-
consistent boundary conditions. For a third «ase we looked for the largest
granule existent in the code which turned out to be the evaluation of the
plasma pressure tensor. It is a sum over several species’s pressures that
In some cases require numerical integration over velocity space coordinates.
Several subroutines, 9 in all, are in the task chai we built. This calculation

is fully vectorized along the z coordinate and the four tasks partition the
X,y plane.

At this point we digress to show the coding details of the implementation
of the multitasking of this large granule. The subroutine VUTP computes
the plasma pressures along a group of axial grid lines. It does this by calling
other vectorized routines that evaluate the various model calculations. In
Table 4 we show the subroutines invoked in the large granule chain. We
note the routines VSFUN, VTFUN, and VUFUN perform integrations over
velocity space by generalized Gaussian quadrature techniques. Roughly 800
lines of FORTRAN comprise this granule. The way VUTP and its called
routines are started is shown next.

external vutp

.if (nmtskon.ne.1) then

do nkloop jk=1,nk

call vutp(koff,ndbot,ndcomps,jk)
nkloop continue

.else

call mtimer (0, jout)

do nkloop jk = 1,nk

tskbgrn(1,jk) = 3

tskbgrn(2,jk) = 0

tskbgrn(3, jk) jk

jkarg(jk) = jk

call tskstart(tskbgrn(1,jk),vutp,koff,ndbot,ndcomps, jkarg(jk))
nkloop continue

do nkwait jk = 1,nk
call tskwait(tskbgrn(1,jk))
nkwait continue
call mtimer(1, jout)
.endif

In this section of code we note that MTIMER is a routine that returns
timings including information about multitasking overlap. The parameter
NMTSKON controls a compile time .if .else and .endif construct that has
the effect of removing either the multitasked version or the unitasked ver-
sion from the compiler input The work s partitioned mto NK parts and

22

Large Granule Subroutine Chain
Routine Chain Caller Purpose Invocations Fully
Level Vectorized

PVAL [Parent| BOSS | Plasma Pressure 1 No
VUTP Task PVAL Axial Vectors 4 No
VNPKERN 2nd VUTP MHD Pressures | 4 Yes
VPOTMOD | 3rd | VNPKERN Potentials 4 Yes
VPASPRES | 2nd VUTP Passing [ons 4 Yes
VTRPPRES | 2nd VUTP | Trapped lons 4 Yes
VSLSPRES 2nd VUTP = Sloshing lons 4 Yes
VSFUN 3rd ...PRES | Velocity Integrals > 4 Yes
VTFUN 3rd | ...PRES | Velocity Integrals > 4 Yes
VUFUN 3rd | ...PRES | Velocity Integrals > 4 Yes

Table 4: All of these Vectorized Routines Form the VUTP Task

the loop NKLOOP ranges over them. Within the unitasked loop sequential
calls are made to VUTP until all the work is done. For the multitasking
loop there is more coding but it is all straightforward. First the task iden-
tifiers are initialized. Next, the loop index is stored into the array jkarg(jk)
because the tasks may want to refer to the index that created them rather
than using its instantaneous value which changes rapidly. Then the call to
TSKSTART sets VUTP running as a separate task; it is started repeat-
edly by subsequent calls without waiting for a return froms VUTP until the
NKLOOP is completed. Lastly, the loop NKWAIT contains the TSKWAIT
call that causes the calling program, the root task, to wait until all of the
tasks have completed. This granule is routinely multitasked in our produc-
tion runs of the code. In a recent rather simple calculation that employed
only two plasma species we have obtained overlap factors of about 2.8 mean-
ing this granule executes 2.8 times faster than its unitasked counterpart.
In these studies of granularity we used both the Cray XMP and the
Cray-2 because we expected dependencies on the machine architecture in
the results. In Table 5 we show the number of floating point computer cycles
that were required to complete each of the gramule’s work. Since VEPEC
i1s non-linear it is solved by iteration. At every nou-linear iteration, each
of these granules is computed again. We iooked at different spatial grids
on the two computers such that the code would be of maximal permitted

|L FLOP and Granularity Comparisons H
LComputer]] Cray XMP-22[Cray-2 H

Multitasking o
Overhead |
Flop 6 x10* | 6x 10
JTOT: i
Flop 5.4 < 10 2.4 x 108
Granularity 0.90 . 400
EXPAND3: I
Flop 2.7 < 10° 3.4 x 108
Granularity 4.50) L 56.7
vuTP: [T 1
Flop 4.0 x 10° ' 1.8 x 10"
Granularity 6666 66 . 300000.0

Table 5: Granularity of Large Cray-2 Codes Versus the XMP

length on the respective machines. We.did this because multitasking is
most important at full or nearly full memory The floating point cycle
count must be compared with the task overhead which was determined to
be approximately 6 x 10* cycles. One concludes that multitasking on the
XMP will have a high overhead except in the large granule case. But on the
Cray-2 all of the granules have relatively small overhead ratios. Obviously,
what we dub as a small granule really has a granularity that depends on
the dimensions of the arrays. Seemingly small loops have a tendency to
become very large when in a large Cray-2 code. The big user should take
some encouragement from this. Many small chunks of code, such as outer
do-loops may be effectively multitasked in these large codes.

Of considerable interest to us was whether implicit algorithms could
be conveniently multitasked? We are also addressing this issue by study-
ing direct solvers (band solvers using (Gaussian elimination), by develop-
ing multitaskable preconditioned conjugate gradient solvers, and by using
cyclic reduction techniques. But within VEPE(we decided to modify the
Douglas-Gunn (DG) algorithm [16], which is still a useful technique for
problems that require non-linear iterations. Heretofore, the VEPEC code
used a scalar version of this type of 30 ADI. Although this technique prop-

24

erly treats only 7pt spatial operator stencils. we have treated more general
operators by using a mixed implicit-explicit technique. Now for the DG al-
gorithm, we remind ourselves that it proceeds in three stages. Within each
stage the algorithm is recursive in one of the spatial indices but indepen-
dent in the transverse space. Thus we parallelize in these transverse spaces.
Within each of them we divide the parallel work between vectorization and
multitasking. One learns rather quickly to set the number of tasks equal
to the number of processors and to vectorize within the tasks. Measure-
ments of the performance show that vectorization alone yields a factor 4.1
speedup over the older scalar code. When multitasking and vectorization
are used together we typically gain amother factor of 2.5 speed up. The
performance of multitasking depends critically on how the system sched-
ules the processors to work on all the competing jobs and tasks available
to it. For the various granules in the DG computation we measure overlap
factors that vary from roughly 1.5 to about 3.6 with an average of 2.5 or
so. We are encouraged by these results which were obtained for a version of
the code that occupied about 10 million words of the Cray-2 about 1/7th
the memory in house and only about 1/25th of the typical Cray-2 installa-
tion. As the memory requirement increases we would expect better overlap
statistics. The main conclusion here is that an existing implicit method
was successfully converted to multitasking with large performance gains.

BICONJUGATE GRADIENT SOLVERS

Recently, considerable interest has been shown in various sparse matrix
solvers that use preconditioning and conjugate gradient techniques. These
techniques are actually exact after a finite number of algorithmic cycles
for the ideal case of an infinite precision machine, but in the real world
they can be regarded as iterative. This ideal number of cycles is just the
number of distinct eigenvalues of the matrix which is less than or equal to
the order (the number of linear equatioas) of the matrix. When properly
preconditioned, convergence is very fast. Iu fact, precision to machine
roundoff is typically obtained in many fewer cycies than for the ideal case.

There are, of course, alternative methods such as direct solvers that
are better in some circumstances. In comparison to the conjugate gradi-
ent methods, the direct solvers are better for sinall order matrix systems.
For sufficiently large systems, the iterative conjugate gradient methods are
faster. The exact size at which the various alternative methods perform
equally varies according to the system software and hardware being used
and also according to how clever one is in codmg the algorithms. On the

5

Cray-1 and Cray X-MP computers, the lack of memory often precluded the
use of the direct method even when th: direct method would have been
faster. For the Cray-2 computers, as wt saw iu 4 case of a Fokker-Planck
code, a direct solver was much faster thar: an iterative one. But with matrix
systems of order about 30000 or greatei. the conjugate gradient methods
win. If one does not need machine roundoff ax-curacy, then the CG methods
take fewer cycles and become even more competitive.

In many plasma physics problems, one obtains a non-symmetric matrix
equation to solve. Incomplete factorization technique:s have been used to
precondition their algorithms, such as I.UCGi%| These methods conven-
tionally have been developed to solve the normal torm of the preconditioned
problem. By normal form we mean that the system bas heen symmetrized
by multiplying the matrix system by the transpose. This has the undesire-
able effect of squaring the condition number {or the spread of eigenvalues) of
the original system. Mikic and Morse have used an alternate algorithm that
is a generalization of the conjugate gradient algorithm that does not rely on
the normal form.[11] This method, rhe bi-conjugate gradient algorithm(12],
typically converges in far fewer iterations than rhe IL1 C(; method.

It has been noted that the recursive portion of the BCG method was
split in two independent procedures and that these represented about 80%
of the work per bi-conjugate gradient iterarion A modified form of BCG
that equallizes the work in these twc procedures bas been developed.[13]
Multitasking was then applied to the resulting imethod The class of ma-
trices treated were the same as those of the [11:"(32 tudies of Shestakov
et. al.[5] which pertained to the 2D} non-symunetric 9point operator stencil
appropriate for partial differential equat ons o s scalar feld.

The new code ILUBCG2 was then compared ro [1.1/(2(2 for the same
test problems and was found to converge ahout twice as fast. Both methods
have the same amount of arithmetic wo-k per reration, so the ILUBCG2

code was faster even when run in umtasking node Studies have been
done multitasking [ILUBCG2 on hoth t1e {ren X-MP'22 and the Cray-2
In our center. We show some of the results i Tabie 6. Of particular

interest is the CPU overlap result. For 1hi» cade. f approximately 9 million
words in size, the overlap of 1.67 1s quire lose = the theoretical maximum
overlap of 1.80. Omne obvious feature f the results = that larger codes
tend to get better overlap. It should bw -ealize! that these overlap results,
which really reflect wall time performance, are very sensitive to the system
scheduler properties. The scheduler i use 1 'he {ray-2 at NMFECC

COMPARISON: UNI- VS MULTITASKING

Total CPU |CPU| Max Time- || CPU | Overlap | Wall
CPU in per per | Possible | Sharing in in Clock

Loop | iteration | Task | Overlap | Overlap || Solver | Solver | time

CRAY-2 using 2 processors

17.58 1.46 65 | 1.80 | 167 | 1877 | 160 | 16.82

17.76 1.48 .66 1.80 1.65 18.94 1.58 18.68

17.56 1.46 65 181 . 1.66 18.74 1.59 15.82

17.51 1.46 65 | 1.80 ; 1.68 | 18.69 1.60 16.96
Averages:

1760 | 146 | 65 | 180 | 167 [1879 159 [17.07

CRAY-2 Unitasking

17.84 1.49 T ’ T T 19.04 23.37

17.17 1.48 | : 18.90 21.44

17.70 1.47 \ !}L 18.87 22.42

17.62 1.47 | L] 1880 21.63
Averages:

1772 | 148 | - 1890 [22.22
Table 6: Comparsion of multitasking and unitasking modes for the
CRAY-2.

has been modified to give good performance to multitasking jobs without
degradation of the system throughput. For sufficiently large codes, it is
possible to actually use computer time at a rate faster than real time if
one can obtain sufficient overlap, even in our timesharing environment. In
Table 7 a comparison of unitasking and multitasking of ILUBCG2 shows
that in one case 19 seconds of CPU time were delivered in 14 seconds. This
should be conclusive evidence of real parallel computation.

Recently, we have incorporated the multitasked BCG method into our
coupled partial differential equation solver.{14] Thus the scalar multitasked
backsolves of ILUBCG2 generalize to have mndirect vectorization instead of
the recursive scalar coding used previously.

FULLY PARALLELIZED PARTICLE CODES

In the foregoing discussion we described conversions to multitasking
and also the construction of a multitasking matrix solver, but we have not

COMPARISON: UNI- VS MULTITASKING
Dimension 361 x 901 ' Dimension 241 x 601

CPU [Overlap! Wall | PU ! Overlap | Wall
in in Clock | ~wm . im | Clock
Solver } Solver | Time 5 | o “olver * Solver | time
p=3 [1878 164 1413 =13 827 162 7.69
1891 163 14.20 3.2 164 | 6.61
1888 1.60 14.10 420 164 ' 6.19
1895 164 1340 220 . 164 6.24
1890 165 1349, 82 163 | 804
Ave: | 1888 | 163 1386 | Ave 322 163 | 6.95
Unitask | 19.10 ' 2241 | Unitask R 1% ' 12.03
19.06 2235 | 32 ' 11.49
18.93 2175 LR . 10.84
Ave: | 19.03 2217 * ave six 7 1146

Table 7: Wall-clock time speedup using three prowessc~ on the CRAY-2.

considered the design of a full physics : ode w ius {‘rav-2 multiprocessor
environment. We decided to build a particle sinulation code for plasma
physics studies of compact toroidal confinemens {evices Design constraints
on the code were that it must be fullv vactorize: and fuly multitaskable.

The code QN3D (Quasi-neutral 30D} is intended t¢ study non-linear
growth of the tilting mode of field-reversed configuirations {FRC) of interest
not only in the fusion program but i other plasma phvsics applications. It
uses rather standard methods of particle simulat:n including linear weight-
ing and the Boris particle pushing scheme {15 We alreadv discussed the use
of the vector indirection in the mterpniation rourines 1 an earlier section.
To multitask this code is trivial, The paraliei work i~ «umply partitioned
among four tasks which in turn are fuliy vector et

We intend to use QN3D or problems where “he wemory requirement
will be as large as allowed by the svsieni 4 vorv large discount will be
obtained for multitasking and the full use of «ll *fu: processors will prevent
the possibility of forced idling of 'V - i« ark ¢ memory for other
codes.

8. STRATEGIES FOR PARALLEL COMPUTATION

Based on these experiences and witn knowledge of the software and
hardware system parameters, one may make estimates about computer
performance and the associated costs. From this one can evolve a strategy
for computing on multiprocessors such as the Crav-2.

We shall group our recommendations intu two classes. The first class
will consist of those practices that will likely ipiprove system throughput
(or at least maintain it) and/or will give better performance against the
wall clock. In a second group we shall consider the effects of the charging
algorithms and suggest further strategies

Our first recommendation i to review the algorithms of a code to see
if they can be replaced by alternate ones that use wore memory but fewer
arithmetic cycles. This way one may take adavantage of the extremely large
memory. One’s codes will finish sooner thus increasing svstem throughput
while getting better performance. Next. one should look at what can be
vectorized. With the vecter wadirection capability, many constructs may be
vectorized that could not before. Vectorization yields both faster code and
also benefits system performance. Finally, one should consider multitask-
ing. The system ar NMFECT is set up to give multitasking codes, even
small ones, much tetter performance against the wal! rlock than can be
obtained unitasking. But unlike the use of the memcry and vectorization
capabilities. multitasking does not increase system throughput for small or
medium sized codes. Dne could termn this a4 “zerc sun game.” As we have
indicated, very larg: codes are an exception 1 this rule bacause they abuse
other CPU’s.

There are other reasons o multitask Money. [s considered likely
that future superconputers will be massively parallel. Tlie time may come
when the computers will have wiore provessors than act:ve users in which
case multitasking wil be essential just '« keep the madchine busy. Also,
memory sizes may iy conilnue ¢ grow af the sams pasce as the number of
processors thus proacug further enconrapenen for rooiloitasking.

There is a certain s esistance or wertios wanoug asers -0 the new method-
ology. We at NMFE (" are trying 1o provide finther incentives for the users
to multitask so that they will be ready o he sex: generation’s machinery.
This policy is fostered by a charging algorithuu ihat charges separately for
memory and CPU e Since the physical hardware i+, costwise, about
2/3 memory and 1 2 < 'PU’s rhe charging alcgosithun - lesigned to reflect

this ratio in its formulation. The amount of CP! time used by a code will
not change much from unitasking to wultitaskiug as it represents a sum
over the separate CPU’s. However, the charge for memory depends on the
product of the memory residency time by the rnemory size. Multitasking
can radically reduce the memory resideccy charge- up te a factor 4 on the
Cray-2. The charging formula presently in use 1s given by

V= {(1-amit.+ bmt,

where a = 2.0x107%, b = 1.1 x10"7 and m is i words of memory. We have
defined M as the ratio of CPU time (¢} to the =ime »i having at least one
processor (t,). Thus we have ¢, = t., A 1 paos substitution and division
by tc we obtain the charge per unit CP!’ time

R=1-2xi0"m 1

Using these formulae, in Fig. 4 we show how sle cost per unit CPU time
varies as a function of the memory charge . large penalty is exacted
for unitasking large memory codes At the present .sei memory limit of
4 x 107 words, there is a 4.6 surcharge factor foi 'nitasking. In contrast, a
fully multitasking code sees a much smaller charge increase with a factor of
about 1.3. For purposes of comparison we show what the charging formula
could be if we were not providing a large .rentive for multitasking; this
is shown by the dashed lines. Ever here we nav:< a memory charge that is
based on the idea that verv large unitasking o wouid abuse other CPU’s
and should pay for the forced idling thus rugentered

As one might guess there are many viewpousis about the charging for-
mula. Its derivation could he based su (05t ara'y 31 market analysis, policy
constraints, industrial practice. or perhaps 1 - omination of these. In
the multiproccessing environmexut, thers are 1nece legrees of freedom that
further complicates the charging strateg:c~ 3. supare! ¢ the unitasking
situation. As the figure :ndicates, the harron, dgoraba is preliminary
and likely to be altered as i+ =+ hetier nlors

9. THE CTSS PRESCRIPYION

The Cray TimeSharing System ({13 was leveloped by NMFECC at
Livermore to provide a time sharing operating <vstem: for the Cray-1 com-
puters that provides a flexible. interactiv+ ¢ good debugging environ-
ment for the user Tt was adapted from 't s2rte 7 TSH wystem (Livermore

Time Sharing System) that had been used on CDC computers. With the
arrival of the multiprocessing computers, the Cray X-MP and the Cray-2,
CTSS has been extended to them. The basic principle of interactivity is
still adhered to and for good reason. It allows for the best use of human
time and it allows debugging in the real computer environment. Features
have been added to it to allow and indeed foster multitasking and multi-
processing in general.

Before multitasking was included the CTSS employed a scheduler algo-
nithm that allowed the programs residenr in memory to take turns running
on the CPU’s. It kept all of the processors busy most of the time so long
as there were codes in memory available to run. With multitasking it looks
at the tasks belonging to programs and schedules them to run. Multitask-
ing programs are in the same queue with the unitasking ones. When a
multitasking program comes to take its turn, it really gets several turns
in sequence (with some exceptions) that allow it to get several processors
started in rapid succession.

10. CONCLUSION

Multiprocessing scientific computers manufactured by Cray have been
available to us for somewhat more that one year We have explored some
of the features of these new machines with most of our efforts being on
the Cray-2. The iarge memory, the enhanced vectorization capability, and
the multiprocessor architecture have been studied. Many of us are aware
of certain deficiencies of the Cray-2 Many of these, on close inspection,
represent trade-offs that were made to make the machine affordable. Cheap
MOS memory was used that has a relatively poor recovery time. To max-
imise the fetch and store rate to memory required changes in the CPU
architecture that, for example, removed the chaning feature of the earlier
Cray computers. What we have learned is that, inspite of certain diffi-
culties, the Cray-7 is a very good perforiner This should be particularly
evident if one assesses the capital cost per mstalded MFLOP.

We have converted, revised, and built algonthms to test the perfor-
mance of the Cray 2 with the CTSS multitasking operating system. We
have gained confidencs that ner only « multitasking easy to program, but
also we find that maany more mimerical algorithms mav use it than was
earlier thought possibie. [t seems clear that future computers will be mul-
tiprocessors and it seems likelv that they will be massively parallel so that

eventually multitasking may well be a necessity for the average code.

11. ACKNOWLEDGEMENTS

Many colleagues from the systems programming staff at NMFECC have
been very instrumental in helping us learn about the new hardware and
software and have helped us by making systems changes that have improved
the performance of parallelized codes. We thank Lawrence A. Diegel, Keith
J. Fitzgerald, Kirby W. Fong, Timothy G. Pierce, and F. David Storch in
this regard. For special thanks we note that Larry G. Berdahl played a
signal role in getting us adapted to the Cray-2 and its software. This
work benefited from the encouragement of John Killeen and Arthur A.
Mirin without which little of this work would have been attempted. This
work was performed under the auspices of the U.S.D.O.E. by the Lawrence
Livermore National Laboratory under contract W-7405-ENG-48.

32

References

(1] Jack Worlton, “A Philosophy of Supercomputing,” Los Alamos Scien-
tific Laboratory Report LA-8849-MS, Los Alamos, New Mexico, 87545,
USA.

[2] G. D. Kerbel and M. G. McCoy, Phys. Fluids 28, p. 3629.

(3] E. J. Horowitz, “Vectorizing the Interpolation Routines of Particle-
in-cell Codes,” accepted for publication in J. Comput. Phys. (1986)

[4] D. V. Anderson and A. I. Shestakov, Comput. Phys. Commun., 30,
(1983), pp. 37-42

[5] A. L Shestakov and D. V. Anderson, Comput. Phys. Commun., u 30
(1983), pp. 31-36

(6] D. V. Anderson, Comput. Phys. Commun., 30, (1983), pp. 51-57
[7] D. V. Anderson, Comput. Phys. Commun.. 30, (1983), pp. 43-49

[8] D. V. Anderson, E. J. Horowitz, A. E. Koniges, and D. E. Shumaker,
“Fully Implicit Solution of Maxwell’s Equations in Three Dimensions
by Preconditioned Conjugate Gradient Methods with an Application
to Reversed Field Configurations,” Proc. 13th European Conference on
Controlled Fusion and Plasma Heating, Schliersee, FRG, April 1986.

[9] Cray Multitasking Users Guide, SN-0222, CRI Publications Depart-
ment Mendota Heights, MN 55120, USA

(10] Kirby W. Fong, NMFECC Buffer Articles, (On new linkages and mul-
titasking), July 1984 - April 1985.

[11] Z. Mikic and E. C. Morse, " The Use of a Preconditioned Biconjugate
Gradient Method for Hybrid Plasma Stability Analysis,” to appear in
J. Comput. Phys. (1986)

[12] D. A. H. Jacobs, in “Sparse Matrices and their Uses,” (I. S. Duff, ed.),
Academic Press Inc., New York, (1981), pp 191-222

[13] A. E. Koniges and D. V. Anderson, “ILUBCG2: A Preconditioned Bi-
conjugate Gradient Routine for the Solution of a Linear Asymmetric

33

Matrix Equation Arising from a 9-Point Discretization, to be submit-
ted to Comput. Phys. Commun.; also in Lawrence Livermore National
Laboratory Report UCRL- 93616 (1986)

[14] D. V. Anderson, E. J. Horowitz, A. E. Koniges, and D. E. Shumaker,
“A Fully Implicit Field Solver for 3D Particle Simulation Codes,” Proc.
1986 Sherwood Theory Conference, New York City, (1986).

[15] J. P. Boris, “Relativistic Plasma Simulation- Optimisation of a Hybrid
Code,” Proc. 4th Conf. on Numer. Simulation of Plasmas, Office of
Naval Research, Arlington, Virginia USA, pp. 3-67

[16] J. Douglas and J. Gunn, Numer. Math. 6, (1964), p. 428

[17] L. G. Berdahl, private communication.

34

CPU
seconds

250

Cray-2

Vector

Number of particles

30,000

200

CPU
seconds

Cray-2 BMA

Getrhos ,/
/7
7
/7

/7 Getrhof

Deposition

Number of particles

} Sorting
Init
30,000

MFLOPS

10000

1000

100

]' I lllllll] IRRRLEL T 1 177171
N‘”3l NlnzN
| /s
3 /’Cray-S‘g
- / -
[4 i
i 7/ Cray-2
// {standard)
/ ® ® —
7 Cray-2 3
(serial 11]
@ —
s Cray-2
/ (prototype) 3
Cray 18 E
i lLllluJ AL 4 i1ill
108 10°

